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TECHNICAL NOTE NO. 1324

INTERACTION FETWEEN THE SPARS OF SEMIMONOCOJUE WINGS WITH CUTOUTS

By N. J.'Eoff, Harry Ease, and Harold Listowitz
SUMMARY

The streeses in the two spars of a model of a wing having three
rectangulsr cutouts were calculated by the PIBAL method, a modification
of Southwell's method of systematic relasxations. The modsl was built
and tested in the Polytechnic Institute of Brooklyn Aeronsutical
Laboratories and the defisciions and strains measured were compared
with calculated values. The agreement was found to be satisfactory,

INTRODUCTTOR

Many modern airplane. wings are built with two spars rather than ac—
cording to the true monocoque principle. Spars are provided because the’
full utilization for load—carrying purposes of the skin and ite rein—
forcemsnts is not possible when there are many cutouts for retracting
landing gear, wing tenks, armament, and so forth near the root. The
calculation of the interaction between the spars is a difficult task if
the rigorous methods of the theory of elasticity are used. To disregard
it, however, is wasteful since the ribs and the skin provide a compar—
atively strong elastic conmection between the spars which relieves the
more highly loaded spar at the expense of the less highly loadsd cne.
The interaction between the spars of fabric-covered wooden wings was
investigated by many authors. The earliest attempt apvears tc be ¢on=""
tained in a paper by L. Ballenstedt freference 1) published in 1918,
while in the late twenties Th. von Karman's group at Aachen developed
and verified a rigorous and comparatively simple methcd of calculation
(references 2 and 3). In England, D, Williams and H, Roxbee Cox worked
out an interesting solution in 1933 (reference 4). All these papers
dsalt with wing structures without a load—carrying skin since at the
time of their publication stressed—skin wings were seldom if ever used.
However, in 1935 Paul Kuhn showed that the Friedrichs~Kérmén equations
can also be applied to.the interaction problem of the more modern types
of wing - (reference B). More recently, a theoretical solution was given
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by W. J. Goodey, who used sitraln—energy methods in his anslysis (ref—
erence 6.

The writers believe that there is & need for a procedure which can
take into account variabls crosa mections, stressed skin, and cut-
outs, and at the same time 1s simple enough to be used by little—trained
porsonnel. It appears that the FPIBAL method developed in refersnce. T
for the calculaltion of the stresses in reinforced flat ani curved panels,
rings end frames, and relnforced monocoque cylinders is well sulted for
the solution of the interaction problem with an accuracy sufficient for
engineering purposes. It is besed on the Southwell relaxatlon method
(reference 8), The structure is assumed to be composed of several beam
elenments having bending, shearing, end torsional rigldity determined
fram the geometry of the wing structure and the mechanical properties of-
its materials of construction. The forces and moments corresponding to
prescribed displacements of the end points of these elements are deter—
mined, and the conditions of equilibrium at thess points are expressed
in ternw of the displacements. The result is a system of linsar equa—
tions which in the present repurt is solved by matrix methods, In the
Southwell méthod a solution is obtained by a systematic procedure of
step—by-step approximations. The golution yields the displacements at
the end points of the elements from which the stresses in any pert of
the structure can be easily calculated.

The results of the calculations were checked by experiments carried
out with a model of a two—spar wing under various condltioms of loading
and end fixation. The agreement was found to be satisfactory.

The authors are much indebted to Dr. Brunc A. Boley and Mr.
Bertram Klein for their advice and help during the construction and
testing of the specimen and in the calculations, to Edo Alrcraft
Corporation, and to Mr. R. Ries of Edo Aircraft Corporation for con—
tributing the formed rib flanges. The investigation was sponsorsed by
and conducted with the financial assistance of the National Advisory
Committee for Asronautics,

SYMBCIS ' -
A cross—eectional area of upper or lower flange
A, cross—-sectional ares of compression flange
Ay area included by the thin wall of a closed section

crose—~gectional darea of uprights, of tension flange
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Ay, AT

AB, BA, BB,
33, 35, etec.

area of cross section of an interspar elesment

subscriptsused with influence coefficients, in which the
fTirst letter or number refers to the point at which
the force or moment exerted upon the bar is acting
and the second to the point at which the displacement
or rotation occurs

wall thickness

deflection at end of beam element; distance hetween spar
uprights (web stiffeners)

Young*®s modulus

bending stress in curved sheet of front spar
maximum normal stress in element 3-5 at its midpolnt
normel stress in compression flange due to L4

normal stress in compresslion flange of front spar
element due to bending resulting from T and P,

normal stress in compression fla.nge due ’c.o bending
resulting from T -

shear stress in cﬁrved. sheet of front spar element

normal streass in tension flange due to £ wt

normal stress in tension flangs of front spar element
due to bending resulting from T and P,

normal streses in tension flange due to bending resul‘ting
frem T

compressive stress in the uprights

tensile stress in the web para.llel to the direction of
wrinkles

ghear modulus

distance betwesn centroids of spar flanges
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ATl

total length of uprights in a apar elemwent

moment of inertia ' —

moment of inertia of curved sheet and flanges of front
gpar

moment of ineitla of interspar element at fromt spar web

moment of inertia of interspar element between spar webs
at distance x forward of rear spar

‘moment of inertia of interépar element between web and

shear center of front spar, at distance x' aft of .
“shear center - :

constant used in equations (9) -
length of beam element

rotation at end of beem element

influence coefficients

end moment acting on beam element; bending moment at any
section of rront spsr element due to T dnd P,

bending moment at the midpoint of\ element 3-5

moment acting on element 3-5 at joint 3

influsnce coefficient .

rotations at'ends-of be&m eleﬁéhté

" end. moments

total vertical load at end of front spar beem element

perimeter of the cross section of an interspar element
between the web and shcar center Gf front spar .

vertical load teken by curved sheet of front spar beanm
element v
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Ps vertical load on elemsnt 3-5 at joint 3

P perimeter of the cross section of an intersper element
between spar webs, at disbence x forward of rear
spaxr

Q stabtic monent of area used in shear-stress formmla

= PQ/It
R.H.S.q, right~-hand sides of equations of equilibrium, in which.
R.E.S. the subecripts refer to the condition of loading and
1x end fixation
8 perinetric coordinate
t web thickneas

t, tl: t2: te;

tys b % rotations at ends of beam eléments

tt, &y influence coefficients ’ ST =

T; Tl: TZ: Te;

T,, T5, Tg . end moments ' L 'H
g, Uiotal total strain energy in a beam element

Ucurved sheet Sbtrain emsrgy in curved sheet of frant spar element

U:E‘langes strain energy in flanges of front spar element
Uuprights strain energy 1'{1 uprights of front spar _eleg:ent_.

Uyeb - strain energy in flat web.' of front spar element

v : vertical displacement

v s m influence coefficients

v - shear force; volume . . B : -

x, x' _' horizontal coordinates o . o R
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¥ vertical coordingte

Iy J1; .Yz, ya)

4y Is5 Jea vertical displacenents

v, ¥ influence coefficients

Y, Yy, ¥z, Ya,

Y;, Ys, Yé shear forces : .- -
« angle of folds of spar webs ‘

e, ¢ angular coorxrdinates

o rotation

METHOD OF ANALYSIS

Figure 1 shows the wing structure that was analyzed and tested, armi
figures 2 and 3 are photographs of the wing on the test stand. For pur—
poses of the enalysis the actual structure was replaced by the assembly
of bars shown in figure 4. The boxes consisting of two adjacent ribs,
as well as the wing covering between them in the actual structure, are
replaced in this figure by bars 1-2, 3~k, and 5-6, These bars are
located at the chordwise center linee of the boxes and extend from the
shear center of the D-shape front spar to the plane of the web of the
rear spar., The spar elements extend spanwise from the center of one
box to the center of the adjecent box and are located at the locus of -
the shear center of the front spar and at the web of the rear spar.

Each element is isolated and its ends are alternately assured to
be rigidly fixed. Calculations ave then made of the forces and mcments
acting on the element at its free and fixed ends necessary to cause a
unit vertical displacement without rotation or twist, a unit rotation
in the plane of bending without vertical displacement or twist, and a
unit twist without displacement or rotation in the plane of bending.
These forces and moments at the ends of the elements are termed "influ—
ence coefficients."

Because of the principle of superposition, the sum of the products
of the 1nfluence coefficients and the corresponding vertical and angular
displacements must equal the extermal load on the structure at any one
point. As many such equations may be writien as there are unknown dis—
placements. The matrix of the constant coefficients of the displacement
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quantities in these equations in their final form is known as the "op—
erations teble."”. The soluticn ef:thess similtansous equati ons gives the

“; displacemeuxe ax the ends - of the assutsd eldments’ fo“ the’ given load

edndition, Frou. these displacements énd the 1nflnence coefficients the
-.hstressee at any ‘point of the structure may “be’ calculated : ’

In the calculatlon of the influence coefficients the spar elements ' o
were first assumed to have sheasx—resistant webs. Consequently, the mo—
ment of inertla of the rear. spar section was computed considering the
* four flange engles and the entire section of the web as fully effective
in bending. In the front spar the semicirculer leading-edge skin was
also included in the effective cross—sectionsl aree, Solution of the

' resulting equations gave smaller deflections for the front spar than

those. observed in the experiments, while in the case of the rear.ppar = 7~
_the agreement was satisfactovy. For this- reason the calculations were = T 7
repeated on the-aggumption that the shear webs acted ag diagonal~tension
fields, ‘end, . the emgle:af -the diagonals was taken as 30 since the folds
,observad in the test appearsd .to subtend approxlmately thig’ engle Cal—
'culatione showed little effect of this angle on the displacements This

‘ca.lcul.ail;ed deflections . in the case of thé rear Bper. It might be men-
, tioned here, that the agreement betweer celculated and measurea etrains
was genelally better than that between calculated and observed deflec—
tions.

] In the calculation of the influbnce coefficients of the interspar
elements, namely, the boxes comnecting the front spar with the rear
spar, the varlation in the height of the crose section was dnly considr

S _ered. _ e

-CmTION';OE THE INFLUENCE comicmm o
Lo ‘ Loty

Upon the beam.of figure 5 a shear force V "atid ‘Bn end moment M
are acting I£ 18. known %that the displacemsnt v ahd the rotation m
.at the end can be calculated from the following formmlas ) ‘._~

. ;'g. (1/35v'1,3/m . (e )
= (1/2)VI®/EI + ML/EI : (2)

As was stated earlisr, in the Southwell and in the PIBAL methods
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only one displacement gquentity at & time is considered Qdifferent from
zero, For instence, it may be stipulated that the free end be displaced
& unit distance in the vertical direction (downward) while the rotation
is prevented by the constreints, Then with v =1 and m = 0 equa-
tions (1) and (2) can be molved for M and V: -

M = ~6EI/12 (3)
V = 128I/1° (%)

These equations can be interpreted as expressing the values of the mo—
ment M and the force V exerted by the constraints upon the free end
of the bar when this end ls displaced downward and is prevented from
roteting. By the definition glven earlier, theese are influence coeffi=.
cients. ’ ‘ )

The influence coefficients corresponding to a unit rotation and
zero vertical displacement can be obtained in a simller manner, if 1n
equations (1) and (2) v is set equal to zero and m equal to unity.
The solution is

M = MEI/L (5)

V = ~6EI/12 (6)

Influence coefficients are designated by two lower~case letters
connected by an arc. The first letter refers to the force (or moment)
exerted upon the bar, the second to the dipplacement (or rotation) that
caused it; consequently, mv is the moment caused by a unit vertical
displacement, while ¥v 1s the force caused by & unit vertical dis—
placement. In order to indicate the points at which the force is act-—
ing and the displacement is teking place, two subscripts are used, The
first subscript refers to the flrat lower—case letter in the symbol for
the influence coefficient, and the second subscript to the second let—
ter. With this convention equations (3) to (6) mey be written in the
form
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fwpp = ~6ELI® 7
Tvgy = 1281/1° )
. \ (1)
o~
Yommgn = BT /L
aBB = —GBI/12 B

It may be noted that EVBB = v’ﬁBB, which equality is a consequence of
Mexwell's reciprocal theorem.

The forces end moments exerted upon the fixed end of the beam of
figure 5 ae rigid end reactions can be calculated from the requirements
of static equilibrium. They can bes expressed with the aid of the
influence-coefflcient notation as follows:

~
Iv,ap = INgg = —6BI/1Z
YWyp = VVpgp = —12E_I/L o _
> (8)
EnAB = I!?ﬂ-_BA = EEI/L
—— ~ . 2
Ymyp = ~Vogp = 6EI/L y

The sign convention used in these equaetions considers as positive down—
ward forces and displacements as well as counterr'lockw:LSQ moments and.
rotations,

As is well known, equations (1) and (2) ave valid only for beanms
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of constant moment of inertia. When the moment of inertla varles, as in
the interspar members, the deflections and rotations must be obtalned ty
integration., Numesrical examplies are glven in eppendix A. The tcrsiomnl
rigidity of the rear spar ie small because of the nature of the construc-—
tion. Advantege was taken of this fact in ths calculation of the
influwence coefficients by assuming this torsicnal rigidity equal to zero.
Accordingly, the rear spar cennot exert any end moments upon the inter—
spar members, so that it becomes umneceseary to consider the effect of-a
prescribed rotation at the rear spar in a vertlical plane contalning the
interspar member. When the vertical displacement of the interspar mom-
ber is prescribed at its end at the rear spar, the member deflects as a
cantilever with a concentrated load at its free end. When a vertical
dieplacemsnt or a rotation is stipulated at its front spar end, itse rear
gpar end is considered as simply supported.

In appendix B influence coefficients of Wagner beams are develcped
using strain~energy methods. With the notation of figure 6 the results
are:

é;BB = ;;BB = B/ [ (13/an®) - (/1) ] 1
Trgp = 28/(K ~ L%/an®) \ (9a)
fi5p = (ABn®/2) [(1/1) - L®/(1° — n®AK)]

where

K = (8L/ht sin®2a) + (41%/3a1h%) + (L cot3q/a)

.

+ (2a% tan®o/h®A,) ) n, (9b)'

wvhere A is the upper flange area, equal to that of the lower flange in
thie case. The influence coefficlents at the fixed end can be calcu~
lated from the following equations:
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tyan = tpp | )
93 = “F¥p f (10)
toyp = ~(vogp + [Togp) ]

—

The expressions for typp, J¥ypp, bipg, &nd yipp &¥6 glven in equi-

tions (9). The influence coefficients of a twisted thin~walled bar can
be celculated from Bredtls formmla

TL (as/p)
3
ha? G

(11)

where t 1is the relative angle of itwist between the two ends of the bar
and T 1is the torque. The integration must be carrisd out asround the
entire perimeter. Setting +t =1 and solving for T jyields

] ya2 ¢
T =%t = =

(12)

L { (d_g/b)

It is easy to see that the influence coefficients for the flxed and free
snds differ only in sign. When the cross saction varies, the influence
coefficients must be obtained by intsgration. For the interspar members
this was done in appendix C. In view of the assumption that the torsion—
al rigidity of the reer spar is zero, it is unneceseary to calculate
influence coefficients correspending to torsion of the rear spar.

The calculation of the influence ccefficients of the D-shape front
spar under shear force end bending momsnt leads to socme complicatlions
when the flat web develops diagonal tension. Obviously, pert of the’
shear force is transmitted by the diagonal—tension field and the rest by
the curved leading-edgs covering. The lesading-edge covering did not
develop wrinkles in the experiments. The normal stress is carried by
the Tlanges and the curved sheet. The distribution of the shear force
between the two elements was destermined with the aid of Castigliano's
second theorem. OFf the total shear force P the part teken by the flat
web was P — Py. The total strain energy stored in curved sheet, :
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flanges, web, and uprights, was calculated and its differsntlsl coeffli—
clent with reaspect to P, was set equal to zexro. This yielded an
expression for P; in terms of the load P, the end moment T, and
the geometric and mechanical properties of the structure.

Substitution of P, in the expression for the total strain energy
and differentiation with respect to P and T led to the end deflec—
tion and the end rotation, respectively, by virtue of Castigliano's
first theorem. The imfluence coefficients could theu be calculated as
was done in the case of the beam with shear--resistant webh. Details of
the calculations are given in appendix D. Numericel values of the 1n—
flvence coefficients are collected in tables I to IIIL.

THE OFERATIONS TABLE

In the operations table are listed the forces and mcmenis exerted.
upon each of the joilnts of the structure as a result of linear and
engular dlsplacements at the Joints. The symbols used to denote forces,
moments as well as linear and angular displacements, and the sign con—
vention adopted, are shown in Figure 7.

In order to explain how the entries in this table are calculated,
let it be assumed that a pesitive unit rotation in the t~direction 1is
undsrteken at Joint 3. (See fig. 8.) For convenlence the unit chosen
18 10 * radien. The effect of this rotatlion upon all the Joints cf the
structure must next be dstermined. However, as was stated esarlier,
whenever a displacement is undertaken, all the other possible displace—
ments of the structure are assumed to be zero. In other worde, the far
ends of the members joinsd at 3 are considered to be rigidly fixed: The
effect of a rotation at Joint 3 is felt, therefore, only in members
1-3, 3-4, and 3-5. :

It is apparent that the rotation stipulated will cause torsion in
element 3—4. The moment that must be exerted upon this element to

cause the prescribed rotation is the influence coefficient tt shown
in figure 8. TIn addition, moments ttss are needed to rotate elements
1-3 and 3-5 so that altogether a moment equal to 2%ias + Tt 18 re—
quired. If the properties of bars 1-3 and 3~5 were not the sams,
the moment tlgg required to rotate each bar would be different. This
is the case at joint 5, since tho length of elsment 3-5 1s 2h=1nches
while that of element 5-7 i1s 12 inches. As may be seen frcm figurse 8

the vertical forces that must act upon elements 1-3 and =5 at
joint 3 are equal in magnitude and opposite in sense. They add up to a
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zero resultant force. The forces and moments needed at the far ends of
the elemsnts are also indicated in figure 8. The mumerical valiues of
all these influence coefficients are listed in tables I_and ITE.

The operatione table corresponding tco the assumpfion of shesar~
resistant spar webs is presented as table .IV. Fach of 1ts. columns
contalne the forces and moments at 8ll the Joints of the structure
corresponding to the displacemeitt indicated at the top of the columm.
The location and the nature of the force (whether & force, a moment in
the n-direction, or a moment in the t—~direction) are shown at the
left end of eackh row. In the operations table are listed the reacticns
of the forces and moments which act upon the bars. Hence the entries
in the cperations table aire the quantities calculated earlier multiplied
by —=1. In other words, the operations table contains the forces and =~ ~
moment§ exerted by the bars upon the assumed geometric constraints (the
Joints).

In the column headed %ty the entries in the first five rows are

zeros. This corresponds to the fact that & rotation in the t—-direction
at Joint 3 has no effect upon Joint 2 because of the assumption of rigid
end fixetion at the far ends of the bars. (See figs. 4 and 8.) More—
over, t5 does not introduce a vertical force or a mcment in the

n-direction at Joint 4, The next item is T, which is equal to

112.86580 inch-pounds when the webs are assumed to be shear resistant.
The positive sign corresponds to the sign convention of figure T snd to
the fact that the operations table contains the forces and moméents ex—
erted upon the Joints (or constraints). Eight digits sre given, since
little additional work is involved in keeping a largs mumber of digits
when a calculating machine is used and since it it desirable to have a
greatl accuracy for checking purposes,

The next three rows refer to the effect of +ta upon jolnt 6. Three
zeros are listed since +tg does not affect joint 6. At Joint 3, Tas

is equal to —(2%fg5 + Ti), as was explained earlier. The numerical

value is —407.42580 inch—pounds, which cen be checked easily with the
aid of tables I and ITI. Again;, as in this eutire discussion of teble
IV, the numerical values are those correspcnding to shear—resistant
webs In row 11 a zeroc is entered becauss the vertical forces at joint
3 cancel, as wasg shown in the discussion of figure 8. In rows 12 to 15
are entered the influence coefficients for the fixed ends 1 and 5 mul—
tiplied by —1.

The entries In the other columns of the operations table are ob—
talned in e similar manner. In addition to the operations table proper
the so-—called right-hand—side msribers are also listed in table IV, '
These represent the applied forces and moments acting on each of the -
Jointa.



ik . NACA TN No. 132k

In the calculations, as well as in the exmeriments, four conditlone
of end fixation end leading were vongidered. Ther are:

Condltion I.— Both spars are rigidly fixed to the test rig at the'r

ends (Joints 7 and & in fig. 4) and a 500-pound load is acting downverd
on the rear spar 5 inches outboard of Joint 1. Thus, for this coaunditim
the external vertical load on Joint 1 is 500 pounds and the exiternal
moment in the t-direction 1s 25C0 inch~pounds. The loeds at all ths
other Jjolnts are zero. The opsratious tatle corresponding to these end
conditions 1s presented in table IV, and the external .;.oads are shown

in the columm healed -RH.S. e . - -

Condition II.— The end fixation is the same as in condition I. A

500--povnd loed is acting dovmward on the rear spar at joint 3. Hence
the extermal load at 3 is 500 pcunds, whils the external moment at 3,
as well aam the external losde at all the other Joints, is zero. The
operations table 1s contained in table IV and the external loads are
listed in the column headed -R.I.S. TT*

Condition IIL.— The front gper is rigidly fixed at joint 6 as be~

fore, but the attechment of the rear spar to the test rig at Joint T is
removed. The operations teble is, of course, modified because of this
change in the end conditions, but only the operations involving a ver—
tical displacement yg and a rotation tg at joint 5 are affected. The

quantitiss listed in teble IV in the rows designated Ty and Yg as
well as in the columns headed t5 and yg must be replaced by the fol—
lowing entries:

ts Is
Ts ~260,145798 -9 ,20700
Y, ~9.20500 -3.0818933

The loadlng terms are the same as in condltion I,

Condition IV,~ The end fixation is the same a8 in condition IIT amd
the loading is the same as 1n condition IT,
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Table IV ropresents 2 sets of equaticns each containing 15 linear
squations with 1% urknowns corresponding to conditions I and II For
example, row 1 can be read as follows:

~1325.907732np — 54.560072y2 + 39.926835n4 + 54.560072y, = 0 (13)

Row 13 represents the following equation if condition I (corresponding
to R.E.S.7r) 1is considered:

54.560072n, + 2.31481ys + 9.20500tg5 + 0.7670833ys
+ 9.20500t; — 3.0818933y; = — 500 ' (1h)

The operations tabie based on the assumption of fully developed
tension diagonal fisld action is presented as table V. It wes con~
structed in exactly the same manner as table IV, taking, however, from
tables I and IIT the influence coefficients corresponu.ing to Wagner
beams,

The systems of linear equations were solved by matrix methods. Of these,

Crout's procedure eppears to be most advantageous (reference 9). “The
displacement quantities obtained by solving the systems of linear equa~
tions are listed in tables VI and VII for both assumptions of spar-web
action.

CALCULATION OF THE STRESSES

When the displacements and rotations are known at each Joint, the
forces and moments exerted upon the bars at the joints can be calculated
eaglly with the aid of the iInfluence coefficlents. The shear force, the
bending moment, and the torque at any point along the element can then
be determined without difficulty from the laws of statics.

As an example, the normal stress will be computed in the flsnge at
the midpoint of element 3~5 for condition I on the assumption of
shear—resistent webs. The displacemsnt guantitles needed are taken
from table VI: '
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¥a = 0.39023 inch
¥s = 0.054731 inch
tg = 0.015918 radian
tg = 0.0078959 radian

The influence coefficients of element 35 are rewritten from table I:

¥¥ag = 7670.8 pounds per inch

7335 = ~92,050 pounds per radian

t%,5 = 1,472,800 inch~pounds per radien
¥¥as = --1670.8 pounds per inch

Ttas = —92,050 pounds per radian

%t 55 = 736,400 inch pounds per radian

The shear force on element 3~5 at Joint 3 is:

Fs ='Fa(§}ss) + ts(fias) + Ys(i?és) + b5 (7ss5) (15)
The moment acting upon the element ﬁt Joint'3 is:

My = to(itss) + Ya(tyoa) + te(tbes) + ys(tas) (16)

Substitution of the numericael values yields:
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P4 = 381 pounds
Mg = -162L4 inch-pounds

gonsequontly, the bending mcment Mg at the midroint of elemsnt 3—5
87 .

Mp = 381 x 12 ~ 162k = 295h inch-pounds

Since the moment of inertia of the rear spar is 0.8416 inch* when the
web is considered fully effective, the maximum.strass f in the flange
is: . e

fp = 2( 2954 )/(0.4208) = 7020 psi

DESCRIPITION OF THE EXPERTMENTS

In order to verify the theory, the sluminum-aelloy model of a wing
shown in figure 1 was dealgned, constructed, and tested. The wing com~
Prised ‘two spars, each having a thin-sheet wed and four angle—section
flanges formed on a bending brake. The curved lsading—edge covering was
attached to the flanges of the front spar so as to form a D-shape con—
struction. The webs were stiffened by means of uprights riveted to them.
Every third upright was part of & wing ridb and was attached to the spar
flanges as well as to the web. Tension diagomals developed in the web
under comparatively low loads, probably because the stiffening effect af
the shorter uprights was slight.

The curved portions of the flanges of the ribs were manufactured m
a hydraulic press and were obtained through the courtesy of Edo Aircraft
Corporetion. The rib webs as well as the upper and lower. cover plates ) o
of the wing were also stiffened by light anglie sections which, however, -
seemed to be sufficiently rigid to prevent buckling. At least no waves,
diagonals, or wrinklss could be observed in the webs of the ribs and in
the cover plates during the experiments. . o

Three of the spaces between adjacent ribs were covered with skin,
while the other three were left open to simulate cutoute. To the ends =
of the spars hesvy machined steel fittings were riveted in order to pro—
vide attachments to the test rig etrong enough to represent rigid end
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fixation. Of the two end attaciments the one at the front syar was al—
ways bolted to the test rig. whlle the one at the rear spar was bolted in
test conditions I and II, and free in conditions ITI and IV.

Detalls of the construction and test arrangement may be seen in the
photographs in figures 2 and 3. In oxder to provide for a sultebles an—
plication of the concentrated loads, stesl channels were riveted to both
gildes of the epar at locatrons corresponding to Joint 3 =nd to a peint
5 inches outboard of Joint 1. {See fig. 4.) The external loals were
applied to the steel channels Ly plaﬂ*ng welghts into a frame suspended
from fittings attached to them.

Strains were measured by meens of Baldwin Southwark SR-L4 type A—L
metalectric strain gages cemer.ted in peirs to the aft flanges (upper
and lowor) of the fromt sper and the forward flanges of the rear spsr.
Gages were locatod at the cntout rsctions of the wing at points A, B,
C, D, B, and F 1in figure 4. The pairs of gages were connecied 1n
sexies in order to obtaln ths average value of the normal stvralin in each
flange. An SR-U4 control box was used for measuring the strein, and a
brass plug and tepsred socket arrangement was employed for switching.
The aczuracy of the straln measuremsnts was choucked by tosts made with
a cantllever beam to which paire of ragee were cemented. The maximum
error in stralin was found to be about +10 X 10 '

The absolute values cf the strains measured in upper and lower
flangss at the same locaticn were found to be very much the same. As mn
exemple, the sitrains observed in the rear spar in loading condition I
are shown in figure 9. Figure 10 demonstrates that the variation with
load of the average absolute value of the etrain at any location was
linear. Similarly, the deflections Increased proportionally to the
loads, as may be seen in ficure 11.

The deflections weyre moasured at pcints 1, 2, 3, 4, 5, end 6
(fig. 4) by meems of Ames dial gages placed on a sturdy steel Srame
rigidly attached to the test rig.

COMPARISON OF THE RESULTS OF EXPERIMENT AND THECORY

The. final results of the experiments are presented in figures 12 to
19, which conteln the experimental curves of deflection and strain for
the four conditions of loading. The values obtained by calculation are
also shown in the same figures reduced to correspond to a load of 150
pounds in order to faclilitate comparison with the experimental results,
From such a compsrison the following conclvsions can be drawn:



NACA TH No. 132k 19

Calculated strains sgree well with the experimental values for both
spars in all the four conditions of loading when diagonal~tension action

is assuned in the spar webs. The only case in which there is appreo-—
ciable disagreement is the strain in the rear svar for condition IV.
However, in this case the strains are very small (at the point of great-
est deviation 13 x 10™° corresponding to about 136-psi stress) and
consequently hsxrd to measure and unimportent for engineering purposes.
When the webs are assumed to be skear resistant, the asgreement is less
satisfactory for the front sper and not mmch different from that Ob—
tained by the diagonal-tension assumption in the case of the rear spar.

As far as deflections arxe concerned, the diagonal-tension assump—
tion gives good agreement for the front spar but not guite so good
agreement Ifor the rear spar for all conditions of loading. The shear—
resistanit-web assumption is better for the rear spar and less satisfac—
tory for the front svar.

CONCLUSICHNS

The calculation of the strains in and the deflections of the spars
of stressed—skin-~type wings having cutoiute cen be carried out with a
reasonable amount of work if the PIBAL methcd is used., Most of this
work may be dons by little~trained perscnnel. Time may be saved if use
is made of the formulas developed in this report for the influence co—
efficients. Experiments with a model wing gave satisfactory agreement

with the theory for four dirferent conditions of loading and end. fixa—
tion, '

Polytechnic Institute of Brooklrn,
Brocklyn, N. Y., August 23, 1946,
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APPERDIX A
DEFTECTIONS AND ROTATIONS OF BEAM FIEMENT WITH VARIABLE MOMENT OF INERTIA

In calculating the vertical displacement at the aft end of the in-
terspar element foir & unit load at this end, the variable moment of
inertis of the elemeut (rib Flenges, »rid web wing covering) between
the reaxr spar and the front spar webs was calcul&ted to be

T, = 0.000016x° + 0,0062kx" + 0.2h00x + 2 4416 (A1)

vhere x 18 measured from the vear epar. In the enalysis based upon
the assumption of shear-resistént spar webs, the moment of inertia was
assuned to vary hyperbolically between the front spar web and the shear
center of theo D—seution, being infinite at the labter point, and mey dbe
written as - .

It = 3.5TIg/x’

where x' is measured from the shear center; 3.57 inches is the dis—
tance between the siear center and the fromt spar web, and Ip is the

moment of inertis of the interspar element at the front spar web.

By meking use of the unit~load method, the totel displacement at
the aft end for unit load at this end is expressed by

o] 3.57

2 B
a=1/E f x? ax/Iy + (1/3.57IgE) f x'(23.57 ~ x'")° ax' (a2)
O

(o]

The firet integration was performed numerically by Simpson's rule, which
is explained in reference 10, The numsrical value of the vertical dis—
placement is

= 43,20 X 10™° in,/unit load
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To calculate the rotation at the forward end dus to a unit moment
in a vertical pisns containing the interspar element, the wnit—load
method is again employed. For the assumpticns of shear—resistant spar
weba and zero.torsiohal rigidity of the rear spar,

23 .57
A i
® = 1/E / (1 — x'/23.57)% ax' /I, )
3.57 ' '
8.57
+ (1/3.5T1gE) f x'(1 - x*,/23.57) ax! (a3)

o]

where  1is the angle of rotation at the front .spar in radians. The
numerical vaelue is ' . ; '

®w = 0,07776 X 10”7 radien Junit moment

It may be mentloned here that In the analysis Tor the assumption of
Wagner beam action the interspar slements were assumed to have infinite
rigidity between the front spar webt and the shear center of the front
gpar, .

Becavse or the assumption of no torsional rigidity for the rear
epar, for a typw.cal interspar element 3-4 +the influence coefficients
Mgg, NFas, ¥has, WWae, gy Mgy, DMMyg ere zero, The remeining in—

influence coefficients may be obtained Trom the values of & and o
with the aid of formuias (&h).

—~ — T e~ - \
J¥a3 = —FYa3 = I¥a4 = —F¥ae = 1/a
1'1’1'1.\44 = 1/(1)
\ (ab)
Fh,, = by, = 1/(23.5Tw) :
f334 = ﬁ§43 = “23-57/5 J
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APPENDIX B

WAGNER BEAM INFLUENCE COEFFICIENTS

The totel strain emnergy in the Wagner beam spar element shown in
Fizure 6 may be expressed as

L
U = (1/2E) [ff,t WL + f (£g + :t',,.,o)2 Ay 8x
- [s)

L

+ f (Fg + £_)% Ay ax + £7 Ag = hl:l (BL)
(o]

where t is the web thickness. It may be stated that

fot = 2Y/(nt sin 2a) h
£y = (¥/a ) (x/h) = (1/2) cot a]
T, = —~(¥/A)[(x/n) + (1/2) cot «]
> (B2)

f, = Y& ten a/(hA))
fto = T/(A.h)
fe, = —T/(A.h)

J

The expressions for fwt’ ft’ bl and. fv are derlved in the theory

C,
“of tension field webs developed by H. Wagner end summarized by
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Paul Kuhn in reference 11, In the expression for fy» 4 ise the distance
be sween uprights. '

On eubstituting these expressions in equa.tibn (Bi) and integrating,
the toital strain energy becomes

U___;_[ WL eL%®  L¥® ooty 2YTI?
2B lnt sin20  3AK7 28 An®

(B3)

N 2731, . ¥%3® tan® o = hlJ
An® Agh®

In this equation A = A, = A,

By virtue of Castiglianc!s first theorem the partial derivative of
U with respect to Y yields the total vertical displacemsnt 4 due
to Y end T, and the partial derivative of U with respect to T
ylelds the total rotation t due to Y and T, &4 and E being meas—
ured ais the free end of the element. .

-
3 2
ég-=d.=(l/2E){- 8YL +1+LY+'IXcot a,.+2L2T
oY nt(sin 20)®  3an% A A2
Yd? tan®a £ h
Agh®
& _ ., Y2+ oIr
ar AERZ y

Then with 4 =21 and % = 0, as in the case of equations (1) and
(2), equations (Bh) are solved for T and Y. In the notation of the

influence coefficients T = Tymg and Y = y¥mp.
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In order to obtain the influence coefficients corresponding to a
unit rotation snd zero verticel displacement, equations (BL4) are solved,
d =0 and t =1, In the notation of the influence coefficients

T = g and Y = ¥ips = typs. The values of the infiluence coeffi— .-
cients sre given in eguations (9),.

APPENDIX C

INFIIENCE COEFFICIZNT FOR TORSION OF EEAM ELEMENT

WITH VARTABIE MOMENT OF INERTIA .

For the interspar members gn this énalysis, the wall thickness of

a crose sectlon is constant, ds is replaced by Py, and A by Ay;
P, eand A, are the perimstef and arse of a cross section, respectively,

at a distance x forward of the rear spar, for x less than 20 lnches,
In the notation of figure 20,

P, = 4(0.1x + 8)
(c1)

Ay = BB(1 + 0.05x)

For x greater than 20 inches, again in the notation of figure 20, the
perimeter and area of a croes section of the member are given by

P! = 2(2y + 12)

(c2)
At = 2hy
Consequently, equation (12) becomes
— AZ d.nnz
it = 4Gp f -Eax+hqbf — ax (c3)
S T J P
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25
The mmmerical value obtained is

= 1.128658 X 10° in,—1b/radian
APPENDIX D
FROWT-SPAR INFLUEFCE COEFFICIENTS

Figure 21 shows a sketch of the curved sheet and the flanges of the
D-shape Zront spar, which carry the part P,

of the total vertical load
P, and the end moment T. If Ty

represents the shear stress and Ty
the bending stress, the strain energy stored in the curved sheet is

£2 2
= B hig
Ucnrved sheet = dr i [ = (Dl_)
v v

the integration teing performed over the entire volume. Or, in the no—
tation of figure 21,

T
~ 2
PQ N\
Ucurved sheet = %C: é (

e/ T

L T

2
+5——f [ (Mr—-—-———°°sq’> tr dp dx
2 S | I

[o}

where -
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?

Qs&.;. f r°t cos 6 48 = + r°t gin @ (D2)

Q

l\)lg

3 2
Il":u‘t'l'QA(I'}')
2 2

M="T4+ Pix

It will be noted that the flanges carry an additionel normal stress
due Lo Wagner bpeam action. To calculate the strain energy stored in the
Wagner beam & procedure simller to that given in appendix B ls used. The
strain enexgy in the web is

2

1 = 2(p — 2L

U, = S jﬁ £ av = D
web o V Wb Eht(sin 2@)2 (p3)

The total strain energy stored in the flanges 1s

L
2
1
Urlanges o5 [ [ <ft+ ft1> A &x
o]
L
2
e [ (vt ) ra (Dh)
|,
(o]

whére f. 1is the normal stress in the tension flange due to Wagner beam
action, ftl the normal stress in the tension flange due to bending re—
sulting from (T + Pyx) of figure 21, and f, and fg, have corre—

sponding meanings for the compression flange. From the discussion in
appendix B it follows that
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-~
P-P X cot o
A 2
P-P;, “x cota >
f. =~ -
¢ A K h 2
\ (05)
(T + Pix)h
f't = —————e
1 2T,
- (T + Pix)h
G o,
4

Substituting these values in eguation (D4) and integrating yields

A 200 =2)%° (P -5 cot® a
= +

U:E‘J.an{_;es or |

2
2(P - P1)L < T PL

+ =y ==
AT, 273
LSBT (g2 ey 22 } (D6)
2 3 /
o1, . |

The strain ensrgy stored in the uprights of the Wagner beam is

(P-P1)%a® = tan® o
=2
2Eh' As .

Unprights = (D7)

The total vertical displacement @& and rotation t at the free
end resulting from T and P are f.ound. from

38%n® 282 |
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~

i = EU'bctal < aUcurved sheet 4 aneb + anlanges + CUu.p:c-ighw

-

oP oP oP oP oP
Y (08)
£ = eutol:g} - iUcurvg_q._ sheet . aneb . E’Ufla.ngc-ve: . aU'l.x]prighte;
T 3T T T ar

However, it will be noted that the expression for Ug.4,q conteins P,

the undetermined part of the total veriical load taken by the curved
sheet. - By Castigliano's second theovem

—=<=22 = 0 ' (29)

When P 1s determined from egquation (D9) ahd the ryesult substituted in
the expression for Ugotal, equations (D8) yield 4 end t. Then pro-

ceeding as in apyendix B and substituting the numericel constants for
the element under consideration ¥ield

5”3']3]3 = 13,767.55 1b/in.
typg = —165,210.65 in.~1b/in.
ttpp = b,378,361.09 in.-1b/radian

Ylpg = typp

o

t'BAB

~(2krtpp + tipp)

~413,305.439 in.-1b/radian



WACA TN No, 132k __. _ 29

The nvmerical constants used to obtain tﬂese resulits ave:

L = 24 in,
h = 7.6 in
3

Zh = 35 in.

t = 0.020 in.
d=Lhin
” ='30° .
AS = 0.06 Sq in. ! -
A = 0,12 8q in.
r =4 in,
4
I, = 5.4762 in.
6
E = 10.5 X 10 Dpsi
.
G =3.9 x10 psi
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TABIE I.~ REAR-SPAR INFLUENCE COEFFICIENTS

Influence coefficients Shear—:::;stant W%EZE?

Element 1-3%

Y5, Yos 7,67'0.833 2,172.291

Tiyi, Yoby, Taya, fﬁa ~92, 050,000 —26,067.488

T %1, Tabs 1,472,800 653,009.833

T1ta, Taby 736, 400,000 -2T,390,169

TV e Yabss Ygti, Ti¥s 92,050,000 26,067,468

Yo¥1, Yi¥a —7,670.833 —2,172.291
Element 5-T

Yois 61,366.66 6,135.8718

TS s, Ysbs, Tr¥s —~368,200,000 -36,815.231

Tote 2,945,600 901,291.383

Yoye ~61,366.66 ~6,135.8718

T b, | 1,472,800 ~459,508,615

Y:ts 368,200 ~36,815.231

apor element -3-5 +the influence coefficients are
identical with the corresponding ones given for. element 1-3.

NATTONAT, ADVISORY
COMMITTEE FOR AERONAUTICS
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TABIE TI.~ FRONT-SPAR INFINIENCE CCEFFICIENTS

1nfluence coefficients

Shear—resistant
web

Wagner
beam

S

Element e—h_&

Yo¥2,

TZS’a; Y2t2,

Tars, Yoba

62,066,211

T, 794531

13,767.5543

165,210.6517

Tots, Tabe 11,916,712.50 4, 378,361,087
Tota, Tabs 5,958, 356.25 '4hié,3q§.h39
Do Yeber Yaboo Toa | TWHL,TORSIL | 165,210,650
Y72, Yova _—62,066.211 ;-13,f67;55h3
-"Element 6-8, | -
Yo h96,52§,69_ ; &;;561;5189
Te¥es Yebes Teve: -2,9':’9,1,.78._12 ,-%eh9;3é9.§1h

Tete | 23,833,h25_.-_ 6, '287_,872.293'
T kg 11,916,712;5 -3,é95,hhé.925
Ygfs 496,529 69 -l41,561.5189
Yot 2,9?9,178.ié " 2hg,369.11k

8For element h—6 the influence coefficients are iden—
tical with the corresponding ones given for element 2-k,

NATIONAL ADVISORY

COUMITTEE FOR AERONAUTICS
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TABIE III.— INFLUENCE COEFFICIENTS FOR THE INTERSPAR ELEMENTS

Shear-resistant—~

Wagner-beam

Influence coefficien“csl wob sssumption assumption Unit
TFre = Tiee 23,148.10 34,319.578 | 1b/in.
Bpp = Hhp = B = 1,128,658ﬂ.ro 1,260,652.5 in.-1b/in.
Mpp = By, 12,559,809 17,613,632.5 in.1lb/radian
Fope = -FBep 545,600, 72 732,132.0k 1b/radien

1Subscript f refers to front spar; subscript r refers to rear spar.

NATIOWAL ADVISORY
COUMITTEE FOR AERONAUTICS
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TABLE V.- OFFRATIONS TABTE FOR THE ASBUMPTION OF WAGNER-BEAM SPAR ELEMFNTS.
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36 NACA TN No. 132k

TABLE VI
SOLUTION OF MATRICES FOR THE ASSUMPTION OF SHEAR-RESISTANT WEBS

[Linear end Angular Displecements times 10%]

I 11 IIT (iﬁiab
Condition (500-1b load|(500-1b-load at| (500~1b load |{ load at
at end; both| Joint 3; both | at end; rear Joint 3;
spars fixed)! spars fixed) spar free) reaxr
gpar free)
np radians 160.2k 32.702 310.98 227.89
¥2 inches LE19.7 1720.1 5,232.9 2125.0
tz radiens 12k.65 39.849 136.52 47.401
ng radlans 8k4.315 66.539 233.83 211,41
Y4 inches- 1919.4 792.40 2,249.1 1016.2
t4 radiens 98.647 37.092 110.36 Lk, 628
ne radians 1k, 3b2 3.1 147,57 1k7.58
ye inches 239.49 111,51 307.13 161.11
ts radians 39.751 - 18,435 49.509 25.17h
tg radians 159.18 66.529 172.51 74,191
¥a inches 3202.3 2388.0 T,767.3 6033.6
t; radians 179.62 bh, 217 191.69 51.752
¥1 inches 8452.1 3681.2 12,619 7508.5
ts radians 78.959 54,528 " 108.13 €8.645
ys inches 547,31 401,39 3,938.3 3808.8

NATIONAL ADVISORY

COITTEE FOR AERONAUTICS
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TABLE VII
SOLUTION OF MATRICES FOR WAGNER-BEAM ASSUMPTION
[Linear and Angular Displacements times 10%]
v

Condition (500-§b load (5oo:§i load (5oofi% load 5223’;:

at end; both | at joint; both| at end; reaxr .

spars fixed) | spars fixed) spar free) J:;z:-’fizzl)‘
'n, radians 0.023305 0.013069 0.036220 0.025316
J2 inches 59731 22769 67828 .28358
tz radians .015kh& .00LBYST .016833 .005946Mk
n, radians .013153 .012013 .025987 .021016 .
¥, inches .25218 .11187 .29998 .1ho9L
t, radians .012297 .0046L496 013664 -GO55411
n, redians .0033627 .0032997 .015063 .015008
¥ inches 032725 016546 048969 .030393
tg radians .0050065 .0023852 0061564 .0030630
tg radians .00170180 0069400 .018568 .0078k26
¥s inches 56867 . 40506 .92556 64THT
t, radians .019828 .0051996 .02;238 .0060373
y1 inches 1.1635 L5267 1.5552 .89538
ts radians .0c81012 .0052501 .011183 .0067089
Y5 inches 11195 095177 42183 .hoksh

RATIONAL ADVISORY i
COAMITTEE FOR AEROFRAUTICS
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Figure 3.~ Front view of wing model end test apparatus.
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NACA TR No. 1334 Fig. 8

Figure 3.~ Rear view of wing model end test apparatus.
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Figs. 4,5,6
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Figure 4.- Simplified structure assumed in analysis.
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FRONT SPAR

REAR SPAR

Figure 7.- Bign convention of forces, moments, linear and angular displacements.

(A1l direotions shown are positive; upper-case letters
represent forces and moments; lower—case letters repre-
sent vertiocal and angular displacements.)

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 8.- Effeoct of a unit rotation at joint 3 in the t-direotion.

(The influencs coeffiolents shown represent the
absolute values of the forces and moments exerted
ugon the structural elements by the oconstrainte;
% : ?rrows indicate the directions in which they
aot,
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